Today you will:

- Describe transformations of quadratic functions
- Write transformations of quadratic functions
- Practice using English to describe math processes and equations

Core vocabulary:

- Quadratic function
- Parabola
- Vertex of a parabola
- Vertex form of a quadratic function

Describing transformations of quadratic functions ... do we have it down?

 $g(x) = (x-3)^2$

Only has 1 transformation...

Subtracting inside means... ...translate right 3 $g(x) = (x-2)^2 + 2$

Has 2 transformations...

Subtracting inside means... ...translate right 2

Adding outside means... ...up 2 $g(x) = (x+5)^2 - 2$

Has 2 transformations...

Adding inside means... ...translate left 5

Subtracting outside means... ...down 2

Describing transformations of quadratic functions ... do we have it down?

$g(x) = (\frac{1}{3}x)^2$	$g(x) = \frac{3}{(x-1)^2}$	$g(x) = -(x+3)^2 + 2$
Only has 1 transformation	Has 2 transformations	Has 3 transformations
Multiplying fraction inside means horizontal stretch factor 3	Multiplying outside >1 means vertical stretch factor 3	Negative outside means reflect around x-axis
	Subtracting inside means translate right 1	Adding inside means translate left 3
		Adding outside means up 2

Parabola

• Another name for the graph (shape) of a quadratic function

Vertex of a parabola

- Where the parabola bends / changes direction
- For a parabola that opens up, it is the lowest point (minimum y value)
- For a parabola that opens down, it is the highest point (maximum y value)

Vertex form of a quadratic function

 $f(x) = a(x - h)^2 + k$, where $a \neq 0$ and the vertex is (h, k).

Example 3

Let the graph of *g* be a vertical stretch by a factor of 2 and a reflection in the *x*-axis, followed by a translation 3 units down of the graph of $f(x) = x^2$. Write a rule for *g* and identify the vertex.

SOLUTION

Method 1 Identify how the transformations affect the constants in vertex form.

reflection in *x*-axis vertical stretch by 2
$$\begin{cases} a = -2 \\ c = -2 \end{cases}$$

translation 3 units down k = -3

Write the transformed function.

 $g(x) = a(x - h)^2 + k$ Vertex form of a quadratic function $= -2(x - 0)^2 + (-3)$ Substitute -2 for a, 0 for h, and -3 for k. $= -2x^2 - 3$ Simplify.

The transformed function is $g(x) = -2x^2 - 3$. The vertex is (0, -3).

Method 2 Begin with the parent function and apply the transformations one at a time in the stated order.

First write a function *h* that represents the reflection and vertical stretch of *f*.

Check 20 -5 -5 -5 -20 -20 $h(x) = -2 \bullet f(x)$

 $= -2x^{2}$

Multiply the output by -2. Substitute x^2 for f(x).

Then write a function g that represents the translation of h.

g(x) = h(x) - 3

 $= -2x^2 - 3$

Subtract 3 from the output.

Substitute $-2x^2$ for h(x).

The transformed function is $g(x) = -2x^2 - 3$. The vertex is (0, -3).

Example 4

REMEMBER

To multiply two binomials, use the FOIL Method.

Let the graph of *g* be a translation 3 units right and 2 units up, followed by a reflection in the *y*-axis of the graph of $f(x) = x^2 - 5x$. Write a rule for *g*. SOLUTION

Step 1 First write a function *h* that represents the translation of *f*.

$$h(x)=f(x-3)+2$$

$$= (x - 3)^2 - 5(x - 3) + 2$$

 $= x^2 - 11x + 26$

Subtract 3 from the input. Add 2 to the output.

Replace x with x - 3 in f(x).

Simplify.

Step 2 Then write a function *g* that represents the reflection of *h*.

g(x) = h(-x) $= (-x)^{2} - 11(-x) + 26$ $= x^{2} + 11x + 26$ Multiply the input by -1. Replace x with -x in h(x). Simplify.

Example 5

The height *h* (in feet) of water spraying from a fire hose can be modeled by $h(x) = -0.03x^2 + x + 25$, where *x* is the horizontal distance (in feet) from the fire truck. The crew raises the ladder so that the water hits the ground 10 feet farther from the fire truck. Write a function that models the new path of the water.

SOLUTION

- **1. Understand the Problem** You are given a function that represents the path of water spraying from a fire hose. You are asked to write a function that represents the path of the water after the crew raises the ladder.
- **2. Make a Plan** Analyze the graph of the function to determine the translation of the ladder that causes water to travel 10 feet farther. Then write the function.
- 3. Solve the Problem Use a graphing calculator to graph the original function. Because h(50) = 0, the water originally hits the ground 50 feet from the fire truck. The range of the function in this context does not include negative values. However, by observing that h(60) = -23, you can determine that a translation 23 units (feet) up causes the water to travel 10 feet farther from the fire truck.

3. Solve the Problem Use a graphing calculator to graph the original

function. Because h(50) = 0, the water originally hits the ground 50 feet from the fire truck. The range of the function in this context does not include negative values. However, by observing that h(60) = -23, you can determine that a translation 23 units (feet) up causes the water to travel 10 feet farther from the fire truck.

g(x) = h(x) + 23 Add 23 to the output.

 $= -0.03x^2 + x + 48$ Substitute for h(x) and simplify.

The new path of the water can be modeled by $g(x) = -0.03x^2 + x + 48$.

4. Look Back To check that your solution is correct, verify that g(60) = 0.

$$g(60) = -0.03(60)^2 + 60 + 48 = -108 + 60 + 48 = 0$$

Homework

Pg 52 #27-44